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Note on formulas for the drag of a sphere 
By T. BROOKE BENJAMIN7 
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PA 16802, USA 

(Received 4 October 1991 and in revised form 24 July 1992) 

Standard approximations expressing the drag of a sphere as a function of Reynolds 
number are reappraised in the light of the evident requirement that drag reverses 
with the direction of motion. It is thereby highlighted that the relation between the 
drag and the velocity of a sphere is not analytic. Another, simpler example is cited 
to illustrate a non-analytic relation between physical properties, which is appreciated 
to be a common feature of hydrodynamic models that rely on the abstract notion of 
an infinite incompressible fluid. 

1. Preamble 
This note aims to  clarify an issue about which I have for many years been in mild 

and friendly contention with Professor Milton Van Dyke. The issue is superficially 
trivial, but it depends on points of interpretation that are delicate enough to deserve 
the present detailed commentary. The following discussion serves at least to 
ventilate a curious attribute of a classic problem in hydrodynamics, which aspect 
seems to  have received little attention previously although it was implicitly covered 
in an investigation by Chester (1962). 

According to the celebrated method of approximation devised by Oseen (1910) and 
to improvements upon it due to Proudman & Pearson (1957) and many others, the 
drag D experienced by a solid sphere of radius a moving with velocity U in an infinite 
incompressible fluid of density p and viscosity y = pv is given by 

D = CixpuaU[ 1 + #B + -G2 In R + O(R2)]  (1) 
(cf. Van Dyke 1975, pp. 5, 234). Here R = aU/v is the Reynolds number, and all 
derivations of this asymptotic expansion for small R are based on the presumption 
that U is a positive quantity, which makes the definition of R unequivocal. I n  terms 
of a dimensionless drag coefficient C, = D/pa2U2, the result ( I )  can be rewritten 

6x 
R C, = -[[I+~R+-~21nR+O(R2)1; 

but this formulation tends to disguise the aspect to  be discussed as follows. 
(Approximations to higher order in R have been worked out by many contributors 
to the subject, but for present purposes it is needless to cite them.) 

The Stokes approximation D = 6xpaU ignoring inertial effects in the fluid plainly 
reflects the group invariance of the idealized hydrodynamic problem. Strictly 
speaking, D so expressed is not the drag on a sphere moving with velocity U but is 
rather the external force needed to drive the motion. Equivalently, in keeping with 
the standard mathematical model used for derivations, D is the drag on a stationary 
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sphere in a fluid that is assigned a uniform velocity U a t  infinity. I n  either 
interpretation, I) evidently has the same direction as [ J ;  and because the 
hydrodynamic problem has the symmetry of the whole rotation group in R3, the 
Stokes result can at  once be generalized to a vector formulation D = 6npaU. In 
particular, it  admits the discrete Z,-symmetry U -+ - U ,  D 

The complete hydrodynamic problem including inertial effects has the same 
symmetry. Therefore, if the definition ofR is extended to negative as well as positive 
and zero values of U,  the expression ( 1 )  appears to remain consistent only if the factor 
in brackets on the right-hand side is the even function of R given by writing IRI in 
place of R.  Thus one may provisionally infer 

-D. 

D = Gx~uaU[l+~IRI+-~'ln1RI+ ...I (3) 
to be the correct generalization of (1) covering the requisite symmetry. This simple 
observation is the main content of this note. It is significant in showing that the 
infinite-fluid model predicts D to be a non-analytic function of U,  having a singularity 
at R = 0 even stronger than is suggested by the logarithmic term in (1). Implications 
of this curious feature will be discussed later, together with a plausible conjecture 
about its absence from any hydrodynamic model in which the fluid is bounded. 

One may reasonably argue, as Professor Van Dyke does, that  the Reynolds 
number is introduced in flow problems merely as a scaling parameter, 80 that the 
attribution of sign to  i t  should be irrelevant to  analyses such as the usual derivation 
of ( 1 ) .  As will be confirmed in $2, however, the appearance of R in non-dimensional 
forms of the Navier-Stokes equations is in fact tied to  a sign implication, the 
recognition of which justifies (3) rigorously as the proper generalization of ( 1 ) .  It will 
be of interest to see precisely how the non-analytic function IRI of the parameter R 
arises in the analysis. Even without such a check, the outcome is wholly to be 
expected. For instance, the correction of D found originally by Oseen and represented 
by the second term on the right-hand side of (1) is seen to  be just &uZP when 
factors ,u in R and the Stokes drag are cancelled; and according to (3) it is generalized 
to ~xnpa2Vsgn(U), as evidently required for the correction to be more generally 
applicable. 

2. The mathematical problem 
The problem is commonly posed as one of steady axisymmetrio motion about a 

fixed sphere; the fluid is assigned a uniform velocity U a t  infinity. In  terms of 
spherical polar coordinates ( r ,  8, q5), whose axis is aligned with the flow a t  infinity, the 
motion is independent of the azimuthal angle $ ; and i t  is representable by a Stokes 
stream function *(r ,  8) such that the components of velocity in the directions of r and 
8 increasing are respectively u = ( r2  sin O)-' @, and .u = - ( r  sin 8)-l kGTT. The equation 
of mass conservation (V. (u ,v ,0)  = 0) is thus automatically satisfied; and the 
elimination of pressure between the Navier-Stokes equations leads to a semilinear 
fourth-order equation for $ (in effect the azimuthal vorticity equation) which in 
dimensional form is 

with 
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(Goldstein 1938, p. 115). The problem is completed by the boundary conditions of 
vaniahing velocity at the surface r = a of the sphere, namely 

@(a, 8 )  = 0, k,(u, 8 )  = o v OE [o, XI, (5) 

+(r, 0) = $r2(sin 0)2 U+ o( r2 )  as r + co, (6) 

and by the asymptotic condition 

which represents the prescribed uniform flow at infinity. 
Kow (6) shows the sign of 9 to  change with the sign of U ,  and the homogeneaus 

boundary conditions (5) are unaffected by such a change. Being quadratic in +, the 
right-hand side of (4) is invariant under the transformation ++ - $, whereas the 
linear left-hand side has its sign changed. But the whole problem is invariant under 
the composite transformation 1J-t - U ,  $ + - $, 0 + n - 0, because 

i3/a(7c - 8)  = - a/a8, sin (n - 8) = sin 8, cot (7c - 8) = -cot 8 
and the second-order operator L is invariant. (This discrete symmetry is to  be 
expected, of course, because the change 0+ II - 0 amounts to reversing the direction 
of the axis of the polar coordinate system.) Accordingly, if the problem is recast in 
dimensionless form as is standard, with r now connoting r / a  and $ now connoting 
$/azU which is independent of the sign of l J ,  equation (4) becomes 

in which R = aU/v must be allowed to  change sign with Lr in order to accommodate 
the transformation 0-t II - 8 that we have just noted to  be concomitant wit,h U +  - U. 
Thus the needed solution of (7) satisfying 

and 

is the same in either case except that  +(r ,  8) when R > 0 becomes +(r, g) with s= 7~-0 when R < 0. 
Correspondingly, the dimensionless velocity components u(r ,  0 )  and w(r, 8 )  when 

R > 0 become -u(r ,  g) and -v(r,  g) when R < 0, if v is redefined to  be measured in 
the direction of increasing e. It follows then that 

and so the dimemionless velocities are exactly the same as in the case U > 0. All these 
considerations are more or less obvious from the symmetry of the hydrodynamic 
problem, but it is helpful to identify the details. 

Calculation of the drag involves three steps. First, a solution of (7) is found 
satisfying (8) and (9). Then the pressure p in the fluid is found from either of the 
Navier-Stokes equations in spherical polar coordinates (see Batchelor 1967, p. 601), 
which respectively relate the components p ,  and r-lp0 of V p  to the velocity (u, v) and 
hence to $. Either of these equations confirms the expected symmetry that p(r ,  8 )  
when R > 0 becomes p ( r ,  g) when R < 0. Alternatively, p can be considered to satisfy 
a form of Poiason's equation given by taking the divergence of the Navier-Stokes 
system, namely 

--dP = N?(9), 
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where A is the Laplacian operator in spherical polar coordinates and Q is a quadratic 
operator that is easily seen to have the property Q$(r, g) = -Q$(r, 0) .  Thus t'he 
right-hand side of this equation is invariant as expect'ed to the t'ransformation 
R+-H, 0+g, and A is obviously invariant. Note that p is a harmonic funct,ion in 
the Stokes limit R = 0. 

The remaining step is to evaluate an integral over the surface of the sphere r = 1 
expressing the net contributions to C, (the non-dimensional drag U )  from shear 
stress R-'v,( 1,0)  and normal stress - p (  I ,  0) + 2K1u,( 1 , O )  = - p (  1 , O ) .  The integral is 
found to be 

C ,  = Bn[{ (10) 

This expression shows clearly, as may be expected, that  C,+-C, when R + - R  
and 8-t e = x-8. The first component of the integral changes sign because 
cos # =  - cos 0;  the factors p and $77 in the integrand are invariant. 

Solution of the full equation (7) and exact completion of the other steps needed to 
find D are inaccessible except. by numerical means. An approximate solut,ion of (7) 
to O(R) for small R was found by Oseen (1910), to be recalled presently, and 
approximations to higher order in R depend on delicate uses of the method of 
mat,ched asymptotic expansions. The point being emphasized here is that t h e  simple 
symmetry of t,he full problem should be incorporated consistently in such methods. 
When it  is, the non-analytic function IR] of R will inevitably fea,ture in 
approximations t#o RC,, which has to be an even function of R E  R. 

The Oseen approximation 
Oseen's improvement on t.he Stokes result RC, = 6x is derived by writing 

(u, v) = (cos 8, -sin 0) + (u', v') 
and linearizing the Navier-Stokes equations in (d, d) (cf. Batchelor 1967, $4.10). 
Equivalently, writing for the stream function 

$ =+r2sin20+$' 

and linearizing (7) in $', one obtains 

in the case R > 0;  and, in the case R < 0, one obtains as the equation for $'(r,G) 

Oseen found a function satisfying (11) approximately to O(R) which, when added 
to a simple function f satisfying Lf = 0, gives an expression that recovers to this 
order the solution of the Stokes problem in a neighbourhood rR 4 1 of the sphere and 
complies with the condition (9). To include the case of negative as well as positive R,  
the approximate solution of (11)  and (12) may be written 

1 -exp [ -+\El( 1 + c )  T ]  

IRI 
$' = --$(l-C) > 

where c = cos 0 when R > 0 and c = cos when R < 0. 
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To confirm the approximation, we may note that 
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Hence both sides of (1 1)  and (12) are found to give 

The composite approximation used by Oseen is 

with I,W specified by (13). Then for r = O(1) we have 

which recovers the solution of the Stokes problem and satisfies (8) to  O( 1 )  for small 
)RI. And (14) evidently satisfies the asymptotic condition (9). 

The use of (14) to evaluate C, leads to RCD = 6n( 1 +gIBI), which is equivalent to 
the first two terms of (3). The details are straightforward, virtually reproducing the 
steps of Oseen’s derivation, and so they can be omitted. As both positive and 
negative small values of R are covered exp1icit)ly in the present revised theory, the 
non-analytic term involving IRI is established without any guesswork, although the 
outcome is wholly in accord with intuition. 

Further comments 
Regarding boundary-value problems for elliptic nonlinear equations on finite 
domains, it is well known that integral properties of solutions depend very smoothly 

~ in general analytically - on parameters except at bifurcation points where the 
number of solutions changes. The familiar but in fact pathological case examined 
above, in which the plainly meaningful non-dimensional property D/,uarJ is 
necessarily an even function of R E R and so is non-analytic because of the small-R 
form shown in (l),  acquires its peculiar behaviour from the presumed infinite extent 
of the fluid. It seems well justified to conjecture that, if the relation D/,uuU = P(R) 
were known exactly for the motion of the sphere along the axis in a fluid contained 
by a rigid cylinder of large but finite radius, then the even function F :  R --f (0, co) 
would be analytic, a t  least for small IRI where ;he possibility of bifurcations is 
remote. But an explicit full solution of this harder problem is unlikely ever to be 
available. 

Note that non-analyticity is easily exemplified in the limit as parameters of 
analytic functions are taken to infinity. For example, the even real function IRI with 
domain R E  R arises from the set of analytic even functions R tanh,!?R (BE ( 0 , ~ ) )  in 
the limit as p -  a. 

The linearized equation ( 1  1 )  or its equivalent has been solved approximately by 
Goldstein (1929) and others to high powers of R. Estimates of RC, on this basis, 
extending Oseen’s original approximation to O(R), have been found to compare 
reasonably well with numerical and experimental results (see Van Dyke 1975, pp. 5, 
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206, 210, 216), even though they avoid the logarithmic terms that Proudman & 
Pearson (1957) have shown to arise from a self-consistent theory based on the full 
Navier-Stokes equations. It has been noted that the convergence of the extended 
Oseen series can be improved by rearrangement of its terms as quotients, and such 
reckoning has indicated a singularity at R = - 2.090 86 , . . (Van Dyke 1970) if the 
series derived for R 2 0 is extrapolated without modification to negative values ofR. 
This spurious singularity can easily be understood by the theory of Pad6 
approximants, and i t  has nothing whatever to  do directly with the physical problem 
which requires any series expansion for D to extend to negative R in the manner 
shown by equation (3). 

3. Another example of non-analyticity 
The mathematical peculiarities asuociated with an infinite expanse of incom- 

pressible fluid are encountered in various other useful applications of this abstraction. 
The following example, which is perhaps easier to understand in full than the case 
considered above, will also serve to illustrate the phenomenon of singular behaviour 
arising in the limit as the boundary of a hydrodynamic model is taken to  infinity. 

Let us recall the properties of infinitesimal waves in a two-fluid system. A perfect 
fluid of density pl ,  bounded above by a horizontal rigid plane, lies a t  rest in a layer 
of thickness h above a second perfect fluid of density pz > p1 which lies a t  rest in a 
layer of thickness H bounded below by another horizontal rigid plane. This system 
can be disturbed by wave motions such that the interface between the fluids suffers 
vertical displacements in the form €sin (wt - k x + b ) ,  where 8 is an infinitesimal 
constant, t is time and x horizontal distance, and w ,  k and b are arbitrary real 
numbers. Being supposedly started from rest, the motion in each layer is irrotational; 
and on this basis the dispersion relation between phase velocity c = w / k  and 
wavenumber k is found to be 

where g is the gravity constant (Lamb 1932, p. 371). Thus c ( k ) ,  the positive syuare- 
root of c z ( k )  given by (15), is an even function of k having a unique maximum given 
by 

say, at k = 0 (i.e. in the long-wave limit). Moreover, for any given finite values of h 
and H ,  the function c :  R -+ (0, c,,) is analytic, that, is, infinitely differentiable and 
identical with its Taylor-series expansion relative to any point of the real line. 

Consider now the result of taking the limit H+ co in (15). Because 

lim cothkH = 1 if k > 0, 

= - l  if k < O ,  
H+w 

(15) gives in the limit. 

arid ($ = gh((p,/p,) - l}. This result shows that the function c : R --f (0, c,,) is no longer 
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analytic, its first derivative being discontinuous at  k = 0. For long waves, an 
approximation of the new dispersion relation is 

whereas the notably different long-wave approximation deriving from (15) to (16) is 

The qualitative difference arising in the limit H +  CO, namely the non-analytic 
expression (17)  instead of the analytic expression (15) and the approximate 
dispersion relation (18) differing from (19), have a profound influence on the general 
behaviour of this wave system. The practical import of these differences is made 
more conspicuous when the theory is extended to account for nonlinear as well as 
dispersive effects, in particular when rational approximations are derived for the 
interesting and comparatively tractable case of unidirectional long waves. Linked 
with a first-order account of nonlinear effects, the approximate dispersion relation 
(19) leads to the Korteweg-de Vries equation. But the alternative relation (18), 
implying the dispersion of long waves to be dominated by a process represented in 
the term O(lkl) ,  leads to  a radically different evolutionary model, namely 
the nonlinear pseudo-differential operator equation that is usually called the 
Benjamin-Ono equation (after Benjamin 1967 and Ono 1975). 

The initial-value (Cauchy) problem for the Benjamin-Ono equation presents 
behaviour that differs in major respects from cmresponding behaviour governed by 
the KdV equation. I n  particular, asymptotic. csharacterieations of localized initial 
data are not conserved by solutions in the way known for solutions of the KdV 
equation. Thus the non-analyticity of basic properties that is induced by the infinite 
extent of the fluid motion has mathematical consequences eclipsing intuitive 
appraisal of such wave models. For a careful account of these issues, reference may 
be made to a recent study by Bona & Saut (1992). 

4. Conclusion 
The idea presented in $91 and 2 is simple enough to be immediately acceptable, 

even without a detailed defence as offered here. It seems incontrovertible, and may 
perhaps be taken for granted already by many hydrodynamicists. But there are 
evidently different ways of looking a t  the matter; as I noted a t  the start, a t  least one 
esteemed colleague has views about it that  differ somewhat from mine. He rightly 
regards the Reynolds number R as a scaling parameter for which an attribution of 
sign is unnecessary. My standpoint is that a mathematically complete account of'the 
parameterization, allowing R to have either sign, is needed to secure a demonstration 
that the even function Dl6.nalJ of R is non-analytic, which property owes to the 
infinite extent of the fluid and is a surprising one for a boundary-value problem of 
elliptic type. The absence of any explicit reference to the matter in the literature, as 
far as I know, suggests that it now deserves to be spelled out. 

T am encouraged by recalling a conversation with Ian Proudman in Cambridge 
over 30 years ago. He and I were then the first Assistant Editors of the JFM.  The idea 
re-examined here was put to him and, as I remember, he agreed wholeheartedly with 
it. 
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